viernes, 16 de marzo de 2012

GUIA 4

*¿CÓMO ENTENDER LAS LEYES DE LA TERMODINÁMICA Y LAS PROPIEDADES FÍSICAS DE LA MATERIA PARA COMPRENDER SU CONTRIBUCIÓN EN EL DISEÑO DE MAQUINAS QUE GENERAN PROGRESO Y AVANCE EN LA CIENCIA?

Es la rama de la física que describe los estados de equilibrio a nivel macroscópico. Constituye una teoría fenomenológica, a partir de razonamiento deductivo, que estudia sistemas reales, sin modélica y sigue un método experimental. Los estados de equilibrio son estudiados y definidos por medio de magnitudes extensivas tales como la energía interna, la entropía, el volumen o la composición molar del sistema, o por medio de magnitudes no-extensivas derivadas de las anteriores como la temperatura, presión y el potencial químico; otras magnitudes tales como la imanación, la fuerza electromotriz y las asociadas con la mecánica de los medios continuos en general también pueden ser tratadas por medio de la termodinámica.
Es importante recalcar que la termodinámica ofrece un aparato formal aplicable únicamente a estados de equilibrio, definidos como aquel estado hacia «el que todo sistema tiende a evolucionar y caracterizado porque en el mismo todas las propiedades del sistema quedan determinadas por factores intrínsecos y no por influencias externas previamente aplicadas». Tales estados terminales de equilibrio son, por definición, independientes del tiempo, y todo el aparato formal de la termodinámica --todas las leyes y variables termodinámicas--, se definen de tal modo que podría decirse que un sistema está en equilibrio si sus propiedades pueden ser descritas consistentemente empleando la teoría termodinámica.8 Los estados de equilibrio son necesariamente coherentes con los contornos del sistema y las restricciones a las que esté sometido. Por medio de los cambios producidos en estas restricciones (esto es, al retirar limitaciones tales como impedir la expansión del volumen del sistema, impedir el flujo de calor, etc), el sistema tenderá a evolucionar de un estado de equilibrio a otro;9 comparando ambos estados de equilibrio, la termodinámica permite estudiar los procesos de intercambio de masa y energía térmica entre sistemas térmicos diferentes. Para tener un mayor manejo se especifica que calor significa «energía en tránsito» y dinámica se refiere al «movimiento», por lo que, en esencia, la termodinámica estudia la circulación de la energía y cómo la energía infunde movimiento. Históricamente, la termodinámica se desarrolló a partir de la necesidad de aumentar la eficiencia de las primeras máquinas de vapor.
Como ciencia fenomenológica, la termodinámica no se ocupa de ofrecer una interpretación física de sus magnitudes. La primera de ellas, la energía interna, se acepta como una manifestación macroscópica de las leyes de conservación de la energía a nivel microscópico, que permite caracterizar el estado energético del sistema macroscópico. El punto de partida para la mayor parte de las consideraciones termodinámicas son los principios de la termodinámica, que postulan que la energía puede ser intercambiada entre sistemas en forma de calor o trabajo, y que sólo puede hacerse de una determinada manera. También se introduce una magnitud llamada entropía, que se define como aquella función extensiva de la energía interna, el volumen y la composición molar que toma valores máximos en equilibrio: el principio de maximización de la entropía define el sentido en el que el sistema evoluciona de un estado de equilibrio a otro. Es la mecánica estadística, íntimamente relacionada con la termodinámica, la que ofrece una interpretación física de ambas magnitudes: la energía interna se identifica con la suma de las energías individuales de los átomos y moléculas del sistema, y la entropía mide el grado de orden y el estado dinámico de los sistemas, y tiene una conexión muy fuerte con la teoría de información. En la termodinámica se estudian y clasifican las interacciones entre diversos sistemas, lo que lleva a definir conceptos como sistema termodinámico y su contorno. Un sistema termodinámico se caracteriza por sus propiedades, relacionadas entre sí mediante las ecuaciones de estado. Éstas se pueden combinar para expresar la energía interna y los potenciales termodinámicos, útiles para determinar las condiciones de equilibrio entre sistemas y los procesos espontáneos.

PROPIEDADES DE LA MATERIANuestro planeta, el Sol, las estrellas, y todo lo que el hombre ve, toca o siente, es materia; incluso, los propios hombres, las plantas y los animales.
Denominamos materia a todo aquello que podemos percibir con nuestros sentidos, es decir, todo lo que podemos ver, oler, tocar, oír o saborear es materia. Toda la materia está formada por átomos y moléculas.
Un cuerpo es una porción de materia, delimitada por unas fronteras definidas, como un folio, el lápiz o la goma de borrar; varios cuerpos constituyen un sistema material. Las distintas formas de materia que constituyen los cuerpos reciben el nombre de sustancia. El agua, el vidrio, la madera, la pintura ... son distintos tipos de sustancias.
La materia presenta formas distintas, las cuales poseen características que nos permiten distinguir unos objetos de otros. El color, el olor y la textura son propiedades de la materia que nos ayudan a diferenciarlos.
LEY DE LA CONSERVACION DE LA METERIA
La ley de la conservación de la materia establece que la materia ni se pierde ni se gana en las reacciones químicas tradicionales, simplemente cambia de forma. Por consiguiente, si tenemos un cierto número de átomos de un elementoen el lado izquierdo de una ecuación, tenemos que tener el mismo número en el lado derecho. Esto implica que la masa también se conserva durante la reacción química.

PROPIEDADES FÍSICAS Y QUIMICAS

Hay dos tipos de propiedades que presentan la Materia, Propiedades Extensivas y Propiedades Intensivas. Las Propiedades Extensivas dependen de la cantidad de Materia, por ejemplo, el peso, volumen, longitud, energía potencial, calor, etc. Las Propiedades Intensivas no dependen de la Cantidad de Materia y pueden ser una relación de propiedades, por ejemplo: Temperatura, Punto de Fusión, Punto de Ebullición, Índice de Refracción, Calor Específico, Densidad, Concentración, etc.
Las Propiedades Intensivas pueden servir para identificar y caracterizar una sustancia pura.
Todos los cuerpos tienen masa ya que están compuestos por materia. También tienen peso, ya que son atraídos por la fuerza de gravedad. Por lo tanto, la masa y el peso son dos propiedades diferentes y no deben confundirse. Otra propiedad de la materia es el volumen, porque todo cuerpo ocupa un lugar en el espacio. A partir de las propiedades anteriores surgen, entre otras, propiedades como la impenetrabilidad y la dilatabilidad. La materia está en constante cambio. Las transformaciones que pueden producirse son de dos tipos:

- Físicas: son aquellas en las que se mantienen las propiedades originales de la sustancia ya que sus moléculas no se modifican.

- Químicas: son aquellas en las que las sustancias se transforman en otras, debido a que los átomos que componen las moléculas se separan formando nuevas moléculas.
Las propiedades físicas de la materia son el conjunto de características que permiten su estudio usando los sentidos o algún instrumento específico. Los científicos se han puesto de acuerdo en determinar que la materia posee ciertas propiedades que son: masa, peso, volumen y densidad.
Masa

En física, masa es la cantidad de materia que constituye un cuerpo determinado. Esta propiedad física no varía jamás, independiente del lugar donde se encuentre el cuerpo o de su volumen. Para medir la masa se utiliza un instrumento llamado balanza. Su valor debe ser expresado siempre en una de estas unidades: tonelada, kilogramo o gramo.
Peso
Esta propiedad física es la fuerza de atracción que ejerce la gravedad sobre la masa de un cuerpo. A diferencia de la masa, esta propiedad varía dependiendo en el lugar donde se encuentre el cuerpo. Por ejemplo, cualquier objeto pesará más si está situado a nivel del mar que si se encuentra en lo alto de una montaña, pero su masa seguirá siendo la misma. Más sorprendente aún es la variación del peso en la Tierra v/s la Luna, ya que en el satélite el peso disminuye considerablemente.
El peso se mide con un instrumento llamado dinamómetro y su unidad se expresa en Newton (N). El dinamómetro está formado por un resorte con un extremo libre y posee una escala graduada en unidades de peso. Para saber el peso de un objeto solo se debe colgar del extremo libre del resorte, el que se estirará; mientras más se estire, más pesado es el objeto.

VolumenEl volumen de un cuerpo es el espacio que éste ocupa. Para medirlo, se debe ver cuántas veces entra en él una unidad de volumen utilizada como unidad de medida. Esta unidad se llama metro cúbico, y corresponde a un cubo de un metro de lado. Para medir volúmenes mayores y menores que el metro cúbico, se utilizan sus múltiplos y submúltiplos, que aumentan o disminuyen de 1.000 en 1.000. Densidad
Densidad
La densidad es una característica de cada sustancia.
Nos vamos a referir a líquidos y sólidos homogéneos . Su densidad, prácticamente, no cambia con la presión y la temperatura ; mientras que los gases son muy sensibles a las variaciones de estas magnitudes.
SUSTANCIAS PURAS, COMPUESTA Y MEZCLAS

Todo lo que existe en el universo está compuesto de Materia. La Materia se clasifica en Mezclas y Sustancias Puras. Las Mezclas son combinaciones de sustancias puras en proporciones variables y se clasifican en Mezclas Homogéneas (Soluciones) y Mezclas Heterogéneas. En una Mezcla Heterogénea pueden distinguirse con facilidad las diferentes fases que forman la Mezcla, mientras que en una Mezcla Homogénea no hay distinción de fases, mientras que las sustancias puras son aquellas que conservan una composición fija e invariable y cuyas propiedades físicas y químicas son siempre las mismas. Algunas no pueden descomponerse, otras sí y comprenden los compuestos y los elementos . Los compuestos son una sustancia pura formada por varios elementos en proporciones constantes y se pueden descomponer en sus elementos.
Y los elementos son una sustancia pura que no puede descomponerse en otra más sencilla.

Son ejemplos de elementos todos los del sistema periódico y compuestos, sus combinaciones. El agua es un compuesto que por electrólisis origina los elementos hidrógeno y oxígeno en la proporción 2 a 1 en volumen.

FASES
Los estados de la materia
La materia se puede encontrar en tres estados:
• Sólido, como la madera y el cobre;
• Líquido, como el agua y el aceite; y
• Gaseoso, como el aire y el vapor de agua.
Una misma materia se puede encontrar en los tres estados. Por ejemplo, el agua, que normalmente es líquida, cuando se enfría se convierte en sólido y, si se le aplica calor, se transforma en gas.
En el Estado líquido el movimiento de las Moléculas se halla restringido en comparación con el Estado gaseoso. En el Estado Sólido, las Moléculas ocupan posiciones fijas dentro de una Red Cristalina y su movimiento se reduce a vibraciones.
Estado sólido: un sólido es una sustancia formada por moléculas, que se encuentran muy unidas entre sí por una fuerza llamada Fuerza de Cohesión. Los sólidos son duros y difíciles de comprimir, porque las moléculas, que están muy unidas, no dejan espacio entre ellas.
Estado líquido: un líquido es una sustancia formada por moléculas que están en constante desplazamiento, y que se mueven unas sobre otras. Los líquidos son fluidos porque no tienen forma propia, sino que toman la del recipiente que los contiene.
Estado gaseoso: un gas es una sustancia formada por moléculas que se encuentran separadas entre sí. Los gases no tienen forma propia, ya que las moléculas que los forman se desplazan en varias direcciones y a gran velocidad. Por esta razón, ocupan grandes espacios.
Teoría Cinética de los Gases:
Entre los siglos XVIII y XIX Bernoulli, Krönig, Clausius, Maxwell y Boltzmann desarrollaron la Teoría Cinética de los Gases para explicar el comportamiento de los mismos. Los postulados de la Teoría Cinética de los Gases son los siguientes:
• Los Gases consisten en Moléculas muy separadas en el espacio. El Volumen real de las Moléculas individuales es despreciable en comparación con el volumen total del Gas como un todo (En esta teoría se considera como Moléculas a las partículas que forman el Gas las cuales en algunos casos son Moléculas Monoatómicas, Diatómicas, Triatómicas,).
• Las Moléculas de los Gases están en constante movimiento caótico, chocan entre sí elásticamente (no pierden energía cinética debido a los choques) y pueden transmitir la energía de una Molécula a otra.
• La Temperatura se considera como una medida de la Energía Cinética Promedio de todas las Moléculas. Es decir, que a una Temperatura dada, las Moléculas de todos los gases tienen el mismo promedio de energía cinética.
• Las fuerzas de atracción entre las Moléculas son Despreciables
• La Presión de un gas es consecuencia de los choques de las Moléculas del Gas con las paredes del recipiente que las contiene resultando en una fuerza por unidad de superficie (Presión).

* Cómo Comprender de manera activa y practica los campos electrostáticos y los avances en la producción de gran cantidad de dispositivos que han contribuido al desarrollo de la humanidad?

Las dos teorías de la relatividad
Einstein desarrollo dos teorías de la relatividad:
La teoría especial de la relatividad en 1905, que se ocupa de la forma en la cual el espacio y el tiempo se manifiestan a diferentes observadores, que se mueven a velocidades relativas constantes entre ellos. Cuando en física hablamos de observadores, nos referimos a personas que pueden hacer mediciones de espacio con una regla, o del paso del tiempo con un reloj. Es decir esta teoría es una teoría del espacio - tiempo
La teoría general de la relatividad en 1915, es una teoría que estudia las causas de la gravedad, de la atracción existente entre dos cuerpos. Pensemos por un momento lo extraño que resulta afirmar que dos cuerpos muy masivos (Ej. La tierra y la luna), ejercen entre sí una fuerza de atracción a pesar de estar separados por una gran distancia y no estar unidos por nada material. La acción a distancia sin una conexión concreta, es algo extraño, aunque al estar acostumbrados a percibirla, no nos asombra. Newton había determinado cual era la ecuación matemática que expresa la ley física de atracción entre los cuerpos, pero nunca explico el porque de la acción a distancia que ejercen los cuerpos entre si. Esta teoría de Einstein brinda de alguna manera ese por que.La teoría de la relatividad especial Ahora nos concentraremos en la primera de las teorías de la relatividad, es decir la especial.

En primer lugar tenemos que saber que la idea fundamental de esta teoría es la no existencia de la condición de movimiento o reposo absoluto. Solo existe el movimiento relativo entre cuerpos y el estado de reposo de un cuerpo será relativo a otro cuerpo. Este es el motivo por el cual la teoría adopta el nombre de Relatividad.

¿Qué significa la condición de movimiento absoluto? seria aquel que puede determinarse y medirse sin ninguna referencia localizada fuera del objeto en movimiento. No existen marcas fijas en el espacio contra las cuales pudieran observarse los estados de movimiento de los cuerpos. Pensemos ¿como nos damos cuenta nosotros viajando en un auto a velocidad constante, es decir sin acelerar ni frenar, que estamos en movimiento? . Alguna vez podremos haber tenido la experiencia de estar en un vagón de tren detenido en el anden, y de repente si vemos otro tren en el anden contiguo que se mueve en dirección contraria al nuestro, nos da la sensación que somos nosotros los que nos movemos. ¿Por qué? Porque simplemente es cierto, nos movemos relativamente al otro tren, lo cual no indica que nos estemos moviendo respecto del anden donde estamos estacionados.

La condición de movimiento esta íntimamente conectada con el tiempo. Es así que otra idea fundamental de esta teoría de Einstein será que el tiempo absoluto no existe.
Ya dijimos que la velocidad a la que escuchamos el tic-tac de dos relojes, depende de la velocidad relativa entre ellos. Se comprueba que si sincronizamos dos relojes , y uno queda en tierra mientras que el otro viaja al espacio y vuelve, al llegar, la lectura en este ultimo mostrara que el tiempo transcurrido es menor que la lectura en el reloj de tierra. No solamente esto sino que si hubo una persona viajando, esta habrá envejecido menos que la que quedo en tierra. Claro como antes dijimos, las diferencias son imperceptibles a los sentidos, aunque no en la medición de los relojes que puede hacerse tan precisa como sea necesario. Veremos esto con mas detalle mas adelante.

Un detalle acerca de la personalidad de Einstein. El siempre desconfió de ciertos conceptos establecidos no por la razón sino por una autoridad suprema. Esta actitud le permitió dar un gran salto, animándose a proponer lo que otros no se animaban o simplemente no se cuestionaban para no ser tildados de tontos.
Es así que lo que Einstein trataba de hacer cuando propuso su teoría especial de la relatividad, era encontrar el sentido a un conjunto de propiedades de la naturaleza observadas durante un largo periodo de tiempo. ¿Cuáles eran estas?

 La relatividad de la mecánica

La rama de la física que estudia como las masas responden a las fuerzas que actuan sobre ellas y a su movimiento, se denomina mecánica. Newton desarrollo en el siglo XVII esta rama de la física a partir de contribuciones hechas anteriormente por Galileo. Las leyes de la mecánica, tienen implícito un principio de relatividad. Este dice que no existe ningún experimento mecánico que pueda revelar el estado de movimiento de un observador. Este solo puede medir su movimiento relativo a otro observador u otro objeto. No puede decir que se mueve a tal o cual velocidad en términos absolutos. Einstein extendió este principio de relatividad de la mecánica a toda la física cuando dijo que ningún experimento, no solo mecánico puede determinar un estado de movimiento absoluto. Su gran salto fue afirmar, el movimiento absoluto no existe.

 La relatividad de la electricidad y el magnetismo.


La electricidad es un fenómeno de la naturaleza asociado con pedazos de materia cargadas positiva o negativamente. Este fenómeno se manifiesta porque entre dichos pedazos de materia cargada se ejerce una fuerza de atracción o repulsión. Cuando las cargas están en reposo hablamos de electricidad estática, mientras que si están en movimiento las denominamos corriente eléctrica. Al frotar un vidrio con un trapo y luego acercarlo a un papel tendremos un ejemplo de electricidad estática, mientras que del enchufe de la pared lo que obtenemos es una corriente eléctrica que esta producida por cargas en movimiento.

El magnetismo por otro lado, es una propiedad que tienen algunas substancias (especialmente el hierro), que se manifiesta también por una fuerza de atracción o repulsión, sobre substancias similares. La experiencia común que tenemos de este fenómeno es la observada con los imanes, los cuales interpretamos están rodeados de energía magnética que produce estas atracciones y repulsiones. Esta energía magnética es lo que se denomina el campo magnético del imán.
Al comienzo del siglo XIX, los científicos descubrieron que estas fuerzas estaban relacionadas de la siguiente manera: una corriente eléctrica en una cable produce a su alrededor un campo magnético, y viceversa un imán que se mueve en el interior de un cable enrollado (bobina) genera en el mismo una corriente eléctrica. Es decir, cargas eléctricas en movimiento generan magnetismo, mientras que imanes en movimiento generan corriente eléctrica.

A partir de que se conoció esta inter-relación, comenzó a denominarse a estos fenómenos electromagnéticos.
Lo que observaron los científicos de esta época, era que existía un principio de relatividad en el electromagnetismo, ya que los movimientos, sea de las cargas como de los imanes, para que produjeran campos magnéticos o eléctricos, eran movimientos relativos entre las partes con las que se hacia el experimento.

Esto se puede apreciar bien en el caso del imán que se mueve en el interior de una bobina. Es exactamente lo mismo dado que produce el mismo resultado que el imán se mueve en una dirección mientras la bobina esta quieta, como que la bobina se mueva en la dirección contraria mientras el imán esta quieto. Siempre que las velocidades relativas en ambos casos sean iguales, la corriente eléctrica que se genera será de la misma intensidad.
Luego vemos que haciendo este experimento solo podemos comprobar el estado de movimiento relativo entre la bobina y el imán, pero no sabemos cual de los dos es el que en realidad se esta moviendo.
Sin embargo no todo el electromagnetismo se ajustaba al principio de relatividad como veremos luego.

El descubrimiento de la luz como fenómeno electromagnético.
Maxwell en 1865, demostró matemáticamente que los imanes y las corrientes eléctricas podían producir ondas viajeras de energía eléctrica y magnética. Ondas que se movían en el espacio por sus propios medios, sin que los imanes o los cables intervinieran en este viaje. Una onda electromagnética como toda onda, transmite energía que se manifiesta como fuerzas eléctricas y magnéticas que se mueven a través del espacio. Estas ondas son invisibles, solo podemos apreciar sus consecuencias. Son campos eléctricos y magnéticos que se trasladan en la dirección del movimiento perpendicular a esta (la dirección) y perpendicularmente entre ellos. Es decir si graficamos tres ejes coordenados X, Y y Z, si la onda electromagnética se traslada en la dirección de Z, los campos eléctricos y magnéticos lo harán en la dirección de X e Y, o alternativamente de Y y X. Maxwell calculo matemáticamente la velocidad de traslación de estas ondas electromagnéticas y encontró que la misma era igual a la velocidad de la luz cuya magnitud ya había sido calculada en el pasado. A raíz de este descubrimiento, Maxwell propuso que la luz era una onda viajera de energía electromagnética, que viaja a través del espacio vacío a una velocidad finita cercana a los 300.000 km/seg.

Una carga eléctrica tiene asociada a ella un campo eléctrico E. Su existencia sirve para indicar que toda carga eléctrica colocada en la influencia de dicho campo, experimentara sobre ella una fuerza de determinada magnitud y en determinada dirección.
Si una carga eléctrica se mueve (esto es lo que conocemos como corriente eléctrica), se genera un campo magnético B, cuyo significado es la indicación de que toda carga en movimiento colocada en la influencia de dicho campo magnético experimentara una fuerza cuya magnitud y dirección diferirán de la que experimentaba por la acción del campo eléctrico.
Dado que lo que realmente cuenta en materia de movimiento, son los movimientos relativos de las cargas respecto a los campos, podemos deducir que tendremos el mismo efecto anterior si sobre una carga en reposo actúa un campo magnético variable.
Ahora bien si sobre una carga en reposo detectamos una fuerza, significa que la misma esta dentro de la influencia de un campo eléctrico.
Por esto Maxwell concluye que un campo magnético variable, crea un campo eléctrico.
La reciproca también se comprueba y así Maxwell también establece que un campo eléctrico variable produce un campo magnético.

No hay comentarios:

Publicar un comentario