martes, 6 de marzo de 2012

PREGUNTAS GENERADORAS  GUIA NUMERO  3

CUAL ES LA  DIFERENCIA ENTRE MASA Y ENERGIA
                                                                                                              
La equivalencia entre la masa y la energía dada por la expresión de la teoría de la relatividad de Einstein.

indica que la masa conlleva una cierta cantidad de energía aunque la primera se encuentre en reposo, concepto ausente en mecánica clásica, esto es, que la energía en reposo de un cuerpo es el producto de su masa por su factor de conversión (velocidad de la luz al cuadrado), o que cierta cantidad de energía de un objeto en reposo por unidad de su propia masa es equivalente a la velocidad de la luz al cuadrado:


En la última fórmula la masa adquiere valor unitario como predeterminado de toda fracción, pudiendo adquirir, tanto la energía como la masa, diversos valores a única condición de que el resultado fuera la velocidad de la luz al cuadrado para que la equivalencia fuera correcta, esto dota la fórmula de cierta libertad de aplicación ya que es independiente de cualquier sistema de unidades, no obstante, actualmente se le aplica el sistema SI (en la fórmula anterior donde la velocidad de la luz se expresa en m/s, la energía en J y la masa en kg), aunque Einstein utilizara el CGS. En un Sistema de Unidades Naturales, c adquiere el valor 1 y la fórmula sería:


Donde se establece una igualdad entre Energía y Masa sin factor de conversión aparente. En teoría, el factor de conversión debe seguir aplicándose aunque su repercusión en el resultado sea 0.
La ecuación de extender la ley de conservación de la energía a fenómenos como la desintegración radiactiva. La fórmula establece la relación de proporcionalidad directa entre la energía E (según la definición hamiltoniana) y la masa m, siendo la velocidad de la luz c elevada al cuadrado la constante de dicha proporcionalidad.
También indica la relación cuantitativa entre masa y energía en cualquier proceso en que una se transforma en la otra, como en una explosión nuclear. Entonces, E puede tomarse como la energía liberada cuando una cierta cantidad de masa m es desintegrada, o como la energía absorbida para crear esa misma cantidad de masa. En ambos casos, la energía (liberada o absorbida) es igual a la masa (destruida o creada) multiplicada por el cuadrado de la velocidad de la luz.


COMO SE REGULA EL CALOR EN EL SER HUMANO

La termorregulación es la capacidad del cuerpo para regular su temperatura, dentro de ciertos rangos, incluso cuando la temperatura circundante es muy diferente. Los animales homeotermos tienen capacidad para regular su propia temperatura.
La temperatura normal del cuerpo de una persona varía dependiendo de su sexo, su actividad reciente, el consumo de alimentos y líquidos, la hora del día y, en las mujeres, de la fase del ciclo menstrual en la que se encuentren. Tradicionalmente la Medicina considera que la temperatura corporal normal -tomada oralmente- oscila entre 36,5 y 37,5 °C en el adulto saludable; el valor promedio viene a ser 37ºC.
Tres estudios diferentes recientes sugieren que la temperatura promedio en adultos saludables es de 36,7 °C. Las variaciones entre los tres estudios (con una sola desviación estándar) son las siguientes:
§  36,5 a 37,9 °C.
§  36,3 a 37,1 °C en varones; 36,5 a 37,3 °C en mujeres.
§  36,6 a 37,3 °C.


COMO SE REGULA EL CALOR EN LOS ANIMALES




Endotermos y Ectodermos Los términos endotermo y ectotermo hacen referencia a la fuente generadora de calor de un animal. Así, un ectotermo es un animal cuya temperatura es controlada, principalmente, por una fuente externa de calor, y su capacidad de generar calor metabólico es insignificante. Ejemplos típicos de animales ectotérmicos son los reptiles, los anfibios, los peces y los invertebrados. Los mamíferos, las aves y muy pocas especies de reptiles, peces e insectos son endotermos. En ellos, la fuente principal de producción de calor es interna, y se debe principalmente al alto metabolismo oxidativo. Las divisiones entre endotermia y ectodérmica -o entre homeotermia y poiquilotermia - representan extremos ideales y que rara vez se encuentran en la naturaleza. Muchos endotermos mantienen su temperatura constante cuando las temperaturas del ambiente permiten esta estrategia o cuando la disponibilidad de comida es alta, pero su temperatura corporal baja rápidamente cuando las condiciones externas empeoran. Otros animales nunca alcanzan la homeotermia, pero producen suficiente calor metabólico como para elevar la temperatura corporal por sobre la del medio ambiente.










 COMO AFECTA LAS TEMPERATURAS EXTREMAS 

 ALTAS Y BAJAS EN LA SALUD DE LOS HUMANOS






Las temperaturas extremas, tanto altas como bajas, pueden causar disturbios fisiológicos y daños a diferentes órganos provocando enfermedad o la muerte en los seres humanos. Una de las consecuencias más seguras y directas del cambio climático es un aumento en la morbilidad y la mortalidad humanas en períodos de clima extremosos como son las olas de calor. La letalidad de una ola de este tipo aumenta si ocurre al principio del verano (cuando la población todavía no ha podido aclimatarse al calor), si es de larga duración y si hay temperaturas nocturnas elevadas. Estos efectos son peores en las ciudades debido al “efecto de isla de calor urbano” que involucra la liberación nocturna del calor almacenado durante el día en el cemento y los materiales metálicos urbanos. Como ejemplo se puede citar la ola de calor que causó la muerte de más de 500 personas en julio de 1995 en la ciudad de Chicago, EE.UU. (WHO 2001).
 Las personas mayores con problemas cardiacos o respiratorios son particularmente vulnerables porque el calor extremo puede exacerbar estas condiciones preexistentes.
La contaminación del aire provoca también una serie de consecuencias serias para la salud y un aumento en la temperatura puede incrementar la formación de contaminantes secundarios como el ozono en la troposfera (parte baja de la atmósfera). El cambio climático podría causar un aumento en la frecuencia de periodos muy calurosos combinados con altas concentraciones de contaminantes dando lugar a cierta sinergia entre los efectos negativos de ambos fenómenos. El calor prolongado también puede provocar un aumento en la dispersión de alérgenos, como esporas de hongos y polen, incrementando las reacciones alérgicas y asma.


No hay comentarios:

Publicar un comentario